Differential response to exogenous and endogenous myostatin in myoblasts suggests that myostatin acts as an autocrine factor in vivo.

نویسندگان

  • Ramón Ríos
  • Susana Fernández-Nocelos
  • Isabel Carneiro
  • Víctor M Arce
  • Jesús Devesa
چکیده

Myostatin is a member of the TGF-beta superfamily that is essential for proper regulation of skeletal muscle growth. As do other TGF-beta superfamily members, myostatin signals into the cell via a receptor complex that consists of two distinct transmembrane proteins, known as the type I and type II receptors. Vertebrates have seven distinct type I receptors, each of which can mix and match with one of five type I receptors to mediate signals for all the TGF-beta family ligands. Accumulating evidence indicates that myostatin shares its pair of receptors with activin, and therefore, the question arises about how specificity in signaling is achieved. Our hypothesis is that a mechanism has to exist to restrict myostatin actions to the muscle cells. To investigate this possibility, we compared the effect of endogenous myostatin (myostatin overexpressed by myoblasts) and exogenous myostatin (recombinant myostatin added to the culture medium) in cultured myoblasts. As opposed to exogenous myostatin, endogenous myostatin induced the transcription of a reporter vector in cultured myoblasts. Notably, the myostatin concentrations that failed to induce a response in myoblasts were effective in MCF-7 cells (human mammary carcinoma) and in HepG2 cells (human hepatic carcinoma). Based on our observations, we propose that a mechanism exists that differentially regulates the bioavailability of endogenous and exogenous myostatin to muscle cells. This is consistent with a model in which myostatin actions are exerted in vivo in an autocrine fashion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of basic fibroblast growth factor results in the decrease of myostatin mRNA in murine C2C12 myoblasts.

During the development and regeneration of skeletal muscle, many growth factors, such as basic fibroblast growth factor (bFGF, FGF-2) and myostatin, have been shown to play regulating roles. bFGF contributes to promote proliferation and to inhibit differentiation of skeletal muscle, whereas myostatin plays a series of contrasting roles. In order to elucidate whether the expression of bFGF has a...

متن کامل

Investigation of GDF8 Gene Promoter in Iranian Sheep

Myostatin is a growth factor belonging to the TGFß superfamily. TGFß growth factors are active in the regulation of embryonic development and in tissue homeostasis in adults. Myostatin is a growth factor controlling proliferation of myoblasts in embryonic development. Mutations in coding sequences of the bovine myostatin (GDF8) gene lead to muscle hyperplasia suggesting its inhibitory function ...

متن کامل

Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis.

Recent studies have shown that myostatin, first identified as a negative regulator of skeletal muscle growth, may also be involved in the formation of fibrosis within skeletal muscle. In this study, we further explored the potential role of myostatin in skeletal muscle fibrosis, as well as its interaction with both transforming growth factor-beta1 and decorin. We discovered that myostatin stimu...

متن کامل

Relationships between Tgf-β1, Myostatin, and Decorin: Implications for Skeletal Muscle Fibrosis*

Recent studies have shown that myostatin, first identified as a negative regulator of skeletal muscle growth, may also be involved in the formation of fibrosis within skeletal muscle. In this study, we further explored the potential role of myostatin in skeletal muscle fibrosis, as well as its interaction with both transforming growth factor-beta1 and decorin. We discovered that myostatin stimu...

متن کامل

Characterization of 5'-regulatory region of human myostatin gene: regulation by dexamethasone in vitro.

We cloned and characterized a 3.3-kb fragment containing the 5'-regulatory region of the human myostatin gene. The promoter sequence contains putative muscle growth response elements for glucocorticoid, androgen, thyroid hormone, myogenic differentiation factor 1, myocyte enhancer factor 2, peroxisome proliferator-activated receptor, and nuclear factor-kappaB. To identify sites important for my...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 145 6  شماره 

صفحات  -

تاریخ انتشار 2004